Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Zero Dimension Heat Release Modeling for Gasoline, Ethanol, Isobutanol and Diisobutylene Operating in Compression Ignition with Varying Injection Strategies

2023-04-11
2023-01-0188
Gasoline compression ignition shows great potential in reducing NOx and soot emissions with competitive thermal efficiency by leveraging the properties of gasoline fuels and the high compression ratio of compression ignition engines operating air-dilute. Meanwhile, its control becomes challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends.
Technical Paper

Zero-Dimensional Heat Release Modeling Framework for Gasoline Compression-Ignition Engines with Multiple Injection Events

2019-09-09
2019-24-0083
A zero-dimensional heat release model was developed for compression ignition engines. This type of model can be utilized for parametric studies, off-line optimization to reduce experimental efforts as well as model-based control strategies. In this particular case, the combustion model, in a simpler form, will be used in future efforts to control the combustion in compression ignition engines operating on gasoline-like fuels. To allow for a realistic representation of the in-cylinder combustion process, a spray model has been employed to allow for the quantification of fuel distribution as well as turbulent kinetic energy within the injection spray. The combustion model framework is capable of reflecting premixed as well as mixing controlled combustion. Fuel is assigned to various combustion events based on the air-fuel mixture within the spray.
X